Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces
نویسندگان
چکیده
منابع مشابه
Fourier Analysis Methods in Operator Ergodic Theory on Super-reflexive Banach Spaces
On reflexive spaces trigonometrically well-bounded operators (abbreviated “twbo’s”) have an operator-ergodic-theory characterization as the invertible operators U whose rotates “transfer” the discrete Hilbert averages (C, 1)-boundedly. Twbo’s permeate many settings of modern analysis, and this note treats advances in their spectral theory, Fourier analysis, and operator ergodic theory made poss...
متن کاملOn Polar Cones and Differentiability in Reflexive Banach Spaces
Let $X$ be a Banach space, $Csubset X$ be a closed convex set included in a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set $C$, so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...
متن کاملQ-reflexive Banach Spaces
Let E be a Banach space. There are several natural ways in which any polynomial P ∈ P(E) can be extended to P̃ ∈ P(E), in such a way that the extension mapping is continuous and linear (see, for example, [6]). Taking the double transpose of the extension mapping P → P̃ yields a linear, continuous mapping from P(E) into P(E). Further, since P(E) is a dual space, it follows that there is a natural ...
متن کاملRotation methods in operator ergodic theory
Let E(·) : R → B(X) be the spectral decomposition of a trigonometrically well-bounded operator U acting on the arbitrary Banach space X, and suppose that the bounded function φ : T → C has the property that for each z ∈ T, the spectral integral R [0,2π] φ(e)dEz(t) exists, where Ez(·) denotes the spectral decomposition of the (necessarily) trigonometrically well-bounded operator (zU). We show th...
متن کاملOn Linear Systems Containing Strict Inequalities in Reflexive Banach Spaces
In this paper, we consider linear systems of an arbitrary number of both weak and strict inequalities in a reflexive Banach space X. The number of inequalities and equalities in these systems is arbitrary (possibly infinite). For such kind of systems a consistency theorem is provided and those strict inequalities (weak inequalities, equalities) which are satisfied for every solution of a given ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Research Announcements in Mathematical Sciences
سال: 2010
ISSN: 1935-9179
DOI: 10.3934/era.2010.17.90